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Abstract
We review the role of dynamical effects and the important interplay of
off-equilibrium and equilibrium phenomena in the physics of magnetic and
transport properties of vortex matter in type-II superconductors. More
specifically, we discuss the unifying framework of these phenomena emerging
in the context of a recently introduced model for vortices and their important
deep relations with other glass formers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The existence of ‘aging’ phenomena in vortex matter of type-II superconductors has long been
a subject of debate [1]. Interestingly, new discoveries [2–5] have clearly shown the presence
of this kind of phenomenon in vortex physics.‘Aging’ and ‘memory’ have been observed
for instance in vortex magnetic creep [2, 3] (i.e., in the relaxation of vortex density) as well
as in transport properties (i.e., in presence of an applied current), where ‘irreversible’ I–V

characteristics have been found along with history-dependent critical current and many other
similar effects [4, 5]. Interestingly, these experiments show a very broad agreement with
theoretical predictions from a recently introduced vortex model [6] and these results are
changing the scenario of our understanding of several issues in the physics of vortices. In
the present paper we briefly review this topic in the framework of the schematic model of [6]
and, more specifically, we discuss dynamical phenomena and their relations to the underlying
equilibrium properties of vortex matter. In particular, we will discuss the non-equilibrium
effects observed in magnetization hysteresis loops and the associated phase transitions. In
order to give a unifying picture, we also analyse the relations to history-dependent effects
in I–V characteristics. The connections with other ‘glassy’ systems, such as glass formers
and spin glasses [7], are also briefly outlined.
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Figure 1. Main panel: the magnetization, M , as a function of the applied field density, Next , in
the ROM at T = 0.3 for the sweep rates γ and κ∗ shown. Notice the appearance of a ‘second
magnetization peak’ when κ∗ is large enough. Inset: the equilibrium value of M (i.e., when the
field ramp rate γ → 0) at T = 0.3 (κ∗ = 0.26).

2. The restricted occupancy model (ROM)

For sake of clarity we briefly recall the properties of the vortex model that we introduced
in [6]: let us consider a system of straight parallel vortex lines, corresponding to a magnetic
field B along the z-axis. The typical high vortex densities and long field penetration length,
λ, imply that each vortex is strongly interacting with very many others, resulting in there
being a formidable technical problem to be solved. The approximation proposed in [6]
consists in coarse graining the system in the xy-plane by introducing a square grid of lattice
spacing, l0, of the order of the London length, λ. The number of vortices on the ith
coarse-grained cell, ni , is an integer smaller than Nc2 = Bc2l2

0/φ0 (Bc2 is the upper critical
field and φ0 = hc/2e is the flux quantum). The coarse-grained interaction Hamiltonian is
thus [6]: H = 1

2

∑
ij niAij nj − 1

2

∑
i Aii |ni | − ∑

i A
p

i |ni |. The first two terms describe
the repulsion between the vortices and their self-energy, and the last the interaction with a
random pinning background. For the sake of simplicity, we consider the simplest version of
H: we choose Aii = A0 = 1; Aij = A1 < A0 if i and j are nearest neighbours; Aij = 0
otherwise; the random pinning is delta-distributed around zero and a value A

p

0 —it is given by1

P (Ap) = (1 − p)δ(Ap) + pδ(Ap − A
p

0 ). Particles have a ‘charge’ si = ±1 corresponding to
opposite directions of magnetic flux (i.e., ni → sini) and neighbouring particles with opposite
‘charge’ annihilate. In analogy with computer investigations of dynamical processes in fluids,
the time evolution of the model is simulated by a Monte Carlo Kawasaki dynamics on a square
lattice of size L at a temperature T (see footnote 1 again). The system is periodic in the
y-direction. The two edges parallel to the y-axis are in contact with a vortex reservoir, i.e., an
external magnetic field, of density Next. Particles can enter and leave the system only through
the reservoir. The above ROM is described in [6].

1 Here A
p

0 = 0.3A0, Nc2 = 27, p = 1/2 and, with the notation used here, A1 = 0.28A0 (the H-parameters can be
related to the real material parameters [6]). L is taken up to L = 128.
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3. Magnetic properties

In this section, we are going to discuss the dynamical behaviour of the magnetization of the
ROM and its relation to the equilibrium phase transition. In our Monte Carlo simulations the
system is prepared by zero-field cooling and then increasing Next at a constant rate, γ , up to
a given value and then decreasing it back to zero at the same rate. At this point, we have no
externally applied currents. In particular, we record the magnetization as a function of Next:

M(t) = Nin(t) − Next(t) (1)

where Nin = ∑
i ni/Ld is the number of particles inside the system and the Monte Carlo

time, t , is measured in units of single attempted updates per degree of freedom. In agreement
with experiments [8], at low temperatures pronounced hysteretic magnetization loops are seen
when M is plotted as a function of Next [6] (see figure 1). Furthermore, when κ∗ is larger
than a critical value κ∗

c � 0.25—as large as in experiments on superconductors (see [1,8])—a
definite second peak appears in M(Next) [6]. Such a second peak (called ‘anomalous’, because
it is at odds with previous scenarios of vortex physics) is related to a new phase transition in
the vortex system observed at moderately high applied fields, as we explain below.

The actual shape of the loops depends on the system parameters and, in particular, on
the rate of sweep of the external field, γ , as shown in figure 1. As soon as the inverse of
the sweep rate is smaller than the system characteristic relaxation time (see below), strong
hysteresis effects appear. Although the second peak does depend on the dynamics through
γ , in the ROM it is related to a new phase transition: in the γ → 0 limit, its location, Nsp,
is associated with a sharp jump in Meq ≡ limγ →0 M(γ ) (see the inset of figure 1). These
findings describe very well the known experiments (for instance, see [6, 8] and references
therein): in agreement with experiments, our numerical simulations show, on increasing the
field (see the inset of figure 1), re-entrant discontinuous transitions at very small and high fields
and, between them, another discontinuous transition associated with the location of the second
magnetization peak [6].

Our model also explains why around the second peak ‘slushy’ regions have often been
observed: the system relaxation time, τM(Next), has a broad maximum around the second
peak (see figure 2), and thus off-equilibrium ‘glassy’ dynamical features appear whenever
the system is observed on too-short timescales [6]. Actually, on lowering the temperature,
τM(T ) shows a steep increase (see figure 3). In fact, for temperatures below Tg � 0.25,
the characteristic time becomes larger than our recording window and the system definitely
loses contact with equilibrium. The crossover temperature Tg(Next) has a physical meaning
similar to the phenomenological definition of the so-called glass transition point in supercooled
liquids [7]. The presence of an underlying ‘ideal’ glass transition point, Tc(Next), can be located
by some fit of τ from the high-T regime, such as a Vogel–Tammann–Fulcher law or a power
law (see figure 3):

τ = τ0 exp

(
E0

T − Tc

)
. (2)

The Vogel–Tammann–Fulcher law has been experimentally observed (see for instance [12]).
Below Tg, relaxation times are huge and the system off-equilibrium dynamics has remarkably
rich ‘aging’ properties [6].

3.1. Vortex mean square displacement

The microscopic origin of the above features in the system dynamics can be understood by
considering the vortex mean square displacement, R2(t). At high enough T , R2(t) is linear in t ;
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Figure 2. The characteristic time, τM , and the Kohlrausch–Williams–Watts exponent, βM , of the
asymptotic magnetic relaxation (here at T = 1.0). Inset: βM as a function of the applied field Next .
Main panel: τM as a function of Next . Notice that τM is a non-monotonic function of Next which
spans about one decade. The location of the maximum of τM corresponds to the position of the
‘second peak’ observed in magnetization loops (see figure 1). The first peak in τM is related to the
crossing of the low-field order–disorder transition.
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Figure 3. The characteristic time, τM , and the Kohlrausch–Williams–Watts exponent, βM , of the
asymptotic magnetic relaxation (here at T = 1.0) as a function of the temperature T , recorded
at Next = 10 after ramping the field at a rate γ as in figure 2. The equilibration time τM grows
enormously on decreasing the temperature T . Below the crossover temperature Tg ∼ 0.25, the
system relaxation times are larger than the observation time. The Vogel–Tammann–Fulcher fit of
equation (2) is the superimposed curve. Inset: in the region where τM seems to diverge, we plot it
as a function of 1/T and show the VTF fit of equation (2). For comparison, an Arrhenius curve is
also shown (dashed straight line).

but at lower temperatures, typically below Tg, the process becomes asymptotically strongly
sub-diffusive: R2(t) � Dtν with ν 
 1 (in figure 4, we show D and ν as functions of T ). From
this point of view, Tg is the location of a sort of structural arrest of the system, where particle
displacement is dramatically suppressed. Each vortex is caged by other neighbouring vortices
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Figure 4. The short-times (asymptotic) diffusion exponent ν0 (ν∞) and coefficient D0 (D∞) of the
mean square displacement, R2(t) � Dtν , as a function of the temperature (at Next = 10). Below
Tg � 0.25 the asymptotic dynamics is strongly sub-diffusive (ν∞ 
 1).

for long times. The system dynamics needs large-scale ‘cooperative rearrangements’ to
relax [7]. Interestingly, a very similar scenario has been recorded in real superconductors [11].

3.2. Anomalous creep at very low temperatures

We can now simply explain another intriguing experimental observation [10] for vortex
matter: even at very low temperatures (where activated processes should be absent), magnetic
relaxation does take place. This phenomenon, previously interpreted in terms of ‘quantum
tunnelling’ of vortices [1], is also found in the present purely ‘classical’ vortex model, where
a non-zero creep rate for T → 0 is just a consequence of the off-equilibrium nature of the
low-T dynamics. In the experiments, the dependence of the creep rate, Sa, on T is investigated,
where Sa = |∂ ln(M)/∂ ln(t)|. When T → 0, in both experiments and in our simulations, Sa

approaches a finite value, Sa(0) > 0 (see figure 5).
We have seen that at very low T , the system equilibration time τ(T ) diverges exponentially.

In that region, the typical observation time windows, tobs, are such that tobs/τ 
 1, and the
system is in the early stage of its off-equilibrium relaxation from its initial state. This is
schematically the origin of the flattening of Sa at very low T [6]. In the slow off-equilibrium
relaxation at very low temperatures, no activation over barriers occurs and the system simply
wanders in its very-high-dimensional phase space through the few channels where no energy
increase is required. Experimentally, the present scenario, where off-equilibrium phenomena
dominate the anomalous low-T creep, is supported by the discovery of ‘aging’ [2, 4, 8].

4. Vortex flow and I–V characteristics

An external current activates a Lorentz-driven vortex flow in type II superconductors and strong
memory and history-dependent effects also appear in the transport (i.e., I–V ) properties. In
connection with the previous results on magnetic creep, we now discuss such phenomena
in I–V characteristics.
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Figure 5. Main panel: the creep rate, Sa, in the ROM (κ∗ = 0.28, γ = 10−3) for Next = 10 as a
function of the temperature, T , in units of A0. The error bars are of the size of the symbols. The
superimposed line is a linear fit. Inset: the creep rate measured in BSCCO single crystal by Aupke
et al [10] for an external field of 880 Oe.

For a given applied field, Next (below Next = 10), we monitor the system relaxation in
the presence of a drive, I (due to the Lorentz force), in the y-direction. As in similar driven
lattice gases [9], the effect of the drive is simulated by introducing a bias in the Metropolis
coupling of the system to the thermal bath: a particle can jump to a neighbouring site with a
probability min{1, exp[−(,H − εI )/T ]}. Here, ,H is the change in H after the jump and
ε = ±1 for a particle trying to hop along or against the direction of the drive, and ε = 0 in
orthogonal jumps. A drive I generates a voltage V [13]: V (t) = 〈va(t)〉, where va(t) = v(t)

is an average vortex ‘velocity’ at time t [6]. Here, v(t) = (1/L)
∑

i vi(t) is the instantaneous
flow ‘velocity’: vi(t) = ±1 if the vortex i at time t moves along the direction of the drive I or
in the opposite direction, and vi = 0 otherwise.

4.1. Memory and irreversibility in driven vortex flow

The first interesting manifestation of ‘irreversibility’ and ‘memory’ in the ROM is shown in
figure 6. The I–V characteristic is measured by ramping I up to some value Imax (see the inset
of figure 6). Then I is ramped back to zero, but at a given value Iw the system is allowed to
evolve for a time tw; finally, I is ramped up again. The resulting irreversible V (I) is shown in
figure 6. For I > Iw the decreasing branch of the plot (empty circles) slightly deviates from
the increasing one (filled circles), showing the appearance of irreversibility. This is even more
apparent after tw: for I < Iw the two paths are clearly different. Interestingly, upon increasing
I again (filled triangles), V (I) matches not the first increasing branch, but the later, decreasing
one: in this sense there is coexistence of memory and irreversibility. Also very interesting
is that on repeating the cycle with a new Iw (squares), the system approximately follows the
same branches. This non-reversible behaviour is also found in other glassy systems [14] The
interplay between irreversibility and memory discussed here can be experimentally checked
in superconductors and the present scenario assessed.

4.2. History-dependent I–V characteristics

We now discuss another striking manifestation of memory phenomena in the I–V

characteristic. As in real experiments on vortex matter [4], we let the system undergo a
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Figure 6. The I–V characteristic is measured at T = 0.1 during cycles of I (see also the inset): I is
at first increased up to Imax (filled circles); along the descending branch of the cycle (empty circles),
when I = Iw (in the main panel Iw = 3/4Imax is indicated by the arrow on the right) the drive
is kept fixed for a time tw = 104 and then the cycle restarted; finally, I is ramped up again (filled
triangles). For I > Iw, the first increasing ramp and the decreasing one (respectively filled and
empty circles) do not completely match, showing irreversibility in the I–V characteristic. After
waiting for a time tw at Iw, a much larger separation is seen. However, on raising I again (filled
triangles) a strong memory is observed: the system follows not the first branch (filled circles),
but the decreasing one (empty circles). Furthermore, in a new cycle (squares) with a lower Iw
(Iw = 2/3Imax, left arrow), the same branches are found.

current step of height I0 for a time t0 before starting to record the I–V characteristic while
ramping I , as sketched in the inset of figure 7. Figure 7 shows (for T = 0.1) that the I–V

characteristic depends on the waiting time t0. The system response is ‘aging’: the longer t0 the
smaller the response, a phenomenon known as ‘stiffening’ in glass formers [7,14]. The model
also reproduces the experimentally found time dependence of the critical current [4]. Usually,
one defines an effective critical current, I eff

c , as the point where V becomes larger than a given
threshold (say Vthr = 10−5 in our case): one then finds that I eff

c is t0- and I0-dependent (like
in experiments [4], I eff

c is slowly increasing with t0; see figure 7).
In our model we can easily identify the characteristic timescales of the driven dynamics.

After applying a drive, I , the system response, V , relaxes following a pattern with two very
different parts: at first a rapidly changing non-linear response is seen, which is later followed
by a very slow decrease towards stationarity. In agreement with experimental findings [4],
the latter has a characteristic double-step structure, which asymptotically can be well fitted
by stretched exponentials2: V (t) ∝ exp(−t/τV )β . The above long-time fit defines the
characteristic asymptotic scale, τV , of the relaxation. The exponents β and τV are functions
of I , T and Next; in particular, τV (I ) decreases with I and seems to approach a finite plateau
for I < I ∗, with I ∗ � O(1). In this sense, the presence of a drive I makes the approach to
stationarity faster and has an effect similar to that of an increase in T .

The above properties of τV are sufficient to explain the history-dependent effects found
in the experiments previously considered. For instance, the ‘imperfect memory’, discussed
above, is caused by the presence of a long, but finite, scale τV in the problem: for a given I1 the
system seems to be frozen whenever it is observed on timescales smaller than τV (I1). Thus,
if t2 is short enough (t2 < τV (I1)), the system preserves a strong ‘memory’ of its state at t1.

2 At lower T , inverse logarithmic relaxations are found [6].
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Figure 7. The I–V characteristic obtained at T = 0.1 by ramping I after keeping the system in
presence of a drive I0 = 1 for a time t0 as shown in the inset. The response, V , is ‘aging’ (i.e.,
depends on t0) and, more specifically, stiffening: the longer t0, the smaller it is.

The weakening of such a ‘memory’ found for higher currents I1 (see [6]) is also a consequence
of the strong decrease of τV (I ) with I . The phenomenon of ‘rejuvenation’ (see [6]) is, in turn,
a consequence of the presence of the extremely fast first part of the relaxation found in V (t)

upon applying a drive and of the above long-term memory. The existence of the slow part
in the V (t) relaxation also affects the ‘stiffening’ of the response in the I–V characteristic
of figure 7, which is due to the non-stationarity of the vortex flow on scales smaller that τV .
Actually, in figure 7, for a given I the value of V on the different curves corresponds to the
system being probed at different stages of its non-stationary evolution.

The origin of these time-dependent properties of the driven flow, and in turn those of
the I–V characteristics, can be traced back to the concurrent vortex creep and reorganization
of vortex domains. In fact, either with or without an external drive, the system evolves in
the presence of a non-uniform density profile which in turn relaxes as we discussed in the
paragraphs above. An important discovery is that the characteristic times of the voltage and
magnetic relaxation are approximately proportional: τV ∝ τM [6]. This outlines why the
non-stationary voltage relaxation is structurally related to the reorganization of vortices during
the creep (a fact confirmed by recent experiments [8]).

4.3. The peak effect in the critical current

Finally, we discuss another important phenomenon discovered in vortex physics [15]: the
so-called peak effect (PE) observed in the system critical current, Ic (as in experiments, Ic is
defined as the point where the voltage becomes larger than a given threshold, here Vthr = 10−5).
This surprising effect consists in a non-monotonic behaviour of Ic as a function of the applied
field, at variance with the simple theoretical scenarios where Ic should just decrease with
Next [1]. The PE is found in our model too (see figure 8), where we can show that it is related
to the same kind of phase transition associated with the second peak in the magnetization as
we discussed above [6].
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figure 1).

5. Conclusions

Summarizing, we have shown that a schematic statistical mechanics lattice model [6] for
vortices in type-II superconductors (a system of particles diffusing in a pinning landscape) allow
us to describe a comprehensive framework of magnetic and transport properties experimentally
observed in vortex matter. In particular, here we discussed the interplay between dynamical and
equilibrium effects. Interestingly, our results are also supported by some molecular dynamics
simulations of more realistic London–Langevin models [16].

We have seen that our model shows a re-entrant melting transition in the field–temperature
plane (B, T ), analogous to what is observed in vortex matter. At low T , on increasing the
field, after the first discontinuous transition and before its re-entrant counterpart, one crosses
another first-order phase transition associated with the ‘second magnetization peak’ and with
the ‘PE’ observed in the critical current.

The system dynamics exhibits equilibration times which become huge around a crossover
point, Tg(Next), and seem to diverge at a lower temperature, Tc(Next), where an ‘ideal’ glass
transition could be located. Around Tg the system dynamics has a crossover corresponding to
a change in microscopic vortex motion: from diffusive (above Tg) to strongly sub-diffusive.
Related to that is a crossover from a power law and a Kohlrausch–Williams–Watts law to the
logarithmic relaxation found in magnetic creep, which below Tg has apparent ‘aging’ features.
The above ‘off-equilibrium’ scenario also explains the experimental finding (previously
interpreted in terms of ‘quantum tunnelling’ of vortices [1]) of the existence of a finite creep
rate, Sa, when T → 0. We have briefly outlined the interesting relations with off-equilibrium
phenomena in other glass formers such as random magnets and supercooled liquids.

We have also shown that transport properties are strongly related to magnetic creep and
we explained a broad set of ‘memory’ effects in vortex flow of driven type II superconductors,
such as ‘memory’ and ‘irreversibility’ in I–V characteristics.

Interestingly, a unifying scenario of magnetic and transport properties in vortex physics
is beginning to emerge, and the important connections between their equilibrium and off-
equilibrium phenomena are becoming clarified.
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